Lower bounds of gradient's blow-up for the Lamé system with partially infinite coefficients
نویسندگان
چکیده
In composite materials, the stress may be arbitrarily large in narrow region between two close-to-touching hard inclusions. The is represented by gradient of a solution to Lamé system linear elasticity. aim this paper establish lower bounds gradients solutions with partially infinite coefficients as distance surfaces discontinuity tends zero. Combining it pointwise upper obtained our previous work, optimality blow-up rate proved for inclusions arbitrary shape dimensions and three. key show that we find factor, functional boundary data, determine whether will occur or not. Dans les matériaux composites, la contrainte peut être arbitrairement grande dans région étroite entre deux dures proches de se toucher. La est représentée par le d'une au système d'élasticité linéaire. Le but cet article d'établir des bornes inférieures du avec partiellement infinis car discontinuité tend vers zéro. En combinant limites supérieures ponctuelles obtenues nos travaux précédents, l'optimalité taux gonflement prouvée pour forme arbitraire en et trois. clé montrer cela que nous trouvons un facteur d'explosion, une fonctionnelle linéaire données limite, à déterminer si l'explosion produira ou non.
منابع مشابه
Gradient estimates for solutions of the Lamé system with partially infinite coefficients
We establish upper bounds on the blow up rate of the gradients of solutions of the Lamé system with partially infinite coefficients in dimension two as the distance between the surfaces of discontinuity of the coefficients of the system tends to zero.
متن کاملStability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation
The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the...
متن کاملLower Bounds for Blow-up Time of Porous Medium Equation with Nonlinear Flux on Boundary
tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we investigate the lower bounds for the blow-up time of the non-negative solutions of porous medium equation with Neumann boundary conditions. We find that the blow-up time are bounded below b...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملLower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II
Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II Chiun-Chuan Chen a; Robert M. Strain b; Tai-Peng Tsai c; Horng-Tzer Yau b a Department of Mathematics and Taida Institute for Mathematical Sciences, National Taiwan University and National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan b Department of Mathematics, Harvard University, Cambridge, Massa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2020.09.007